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Fluctuations of membrane potential of cortical neurons, referred to
here as internal states, are essential for brain function, but little is
known about how these internal states emerge and are maintained,
or what determines transitions between these states. We per-
formed intracellular recordings from hippocampal CA3 pyramidal
cells ex vivo and found that neurons display multiple and
hierarchical internal states, which are linked to cholinergic activity
and are characterized by several power law structures in
membrane potential dynamics. Multiple recordings from adjacent
neurons revealed that the internal states were coherent between
neurons, indicating that the internal state of any given cell in a local
network could represent the network activity state. Repeated
stimulation of single neurons led over time to transitions to different
internal states in both the stimulated neuron and neighboring
neurons. Thus, single-cell activation is sufficient to shift the state of
the entire local network. As the states shift to more active levels,
theta- and gamma-frequency components developed in the form of
subthreshold oscillations. State transitions were associated with
changes in membrane conductance but were not accompanied by
a change in reversal potential. These data suggest that the
recurrent network organizes the internal states of individual
neurons into synchronization through network activity with bal-
anced excitation and inhibition, and that this organization is
discrete, heterogeneous and dynamic in nature. Thus, neuronal
states reflect the ‘phase’ of an active network, a novel demonstra-
tion of the dynamics and flexibility of cortical microcircuitry.
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Introduction

Cognitive functions of humans and animals, including con-

sciousness, perception, learning and memory retrieval, depend

on brain states (Wilson and McNughton, 1994; Vaadia et al.,

1995; Steriade et al., 2001; Stickgold et al., 2001). Such brain

states emerge spontaneously during behavior, as well as during

the wake--sleep cycle, and they are ultimately attributed to

fluctuations of membrane potential of individual neurons (both

suprathreshold and subthreshold). These fluctuations are re-

ferred to here as internal states. One of the representative

internal states is slow-wave oscillations, so-called UP/DOWN

alternations. The UP/DOWN alternations are characterized by

a low-frequency ( <1 Hz) and large-amplitude (~20 mV)

alternation of depolarization and hyperpolarization, and are

usually observed in slow-wave sleep and under anesthesia

(Steriade et al., 1993; Cowan and Wilson, 1994). These states

influence neural processing of sensory inputs; that is, the

intensity and propagation of neuronal activity vary depending

on whether neurons reside in the UP or DOWN state (Anderson

et al., 2000; Petersen et al., 2003; Shu et al., 2003b; Brecht et al.,

2004; Sachdev et al., 2004; Leger et al., 2005). In the waking

state or rapid-eye-movement (REM) sleep, the UP/DOWN

alternation disappears, and instead neurons display persistent

UP depolarization with fast oscillations (Steriade et al., 2001;

Steriade, 2003). In the hippocampus, this state is likely to be

associated with theta-frequency (3--7 Hz) oscillations (Buzsaki,

2002).

Thus, neurons possess various internal states, but it remains to

be elucidated how neurons generate, maintain and transit

between these internal states. Previous studies have demon-

strated that ongoing fluctuations of membrane potential are

synchronized among adjacent neurons in the hippocampus

(Kamondi et al., 1998; Buzsaki, 2002), the neocortex (Lampl

et al., 1999; Petersen et al., 2003; Ikegaya et al., 2004) and the

striatum (Stern et al., 1998). Network synchrony is believed to

depend on recurrent synaptic activity with a balance of

excitation and inhibition (Amit and Brunel, 1997; Shu et al.,

2003a). In the present study, therefore, we first focus on the

relationship of synchronous synaptic inputs and the internal

states of hippocampal CA3 pyramidal cells, which synapse with

~6000 other pyramidal cells to form an autoassociative, re-

current network in vivo (Amaral et al., 1990). We then closely

examine the temporal structures and dynamics of the internal

states observed in these neurons. We find that membrane

potential dynamics of nearby neurons are coherent, have

many degrees of intensity, and are organized with multiple

power law structures. We create a theoretical model that is

analogous to the Landau ‘phase transition’ theory and replicates

the dynamics of the internal states of a neuron. The computer

simulation suggests that the level of balanced excitatory and

inhibitory inputs is crucial for determining the internal states.

We therefore propose that the internal states of neurons

represent the ‘phase’ of an active recurrent network, i.e. a

synchronous network state.

Materials and Methods

Organotypic Cultures of Hippocampal Slices
Hippocampal slices prepared from postnatal day 7 Wistar/ST rats (SLC,

Shizuoka, Japan) were cultured as previously described (Koyama et al.,

2004). Briefly, rat pups were deeply anesthetized by hypothermia and

their brains were aseptically removed in accordance with the National

Institutes of Health guidelines for laboratory animal care and safety. The

caudal half of the whole brain was horizontally cut into 300-lm-thick

slices using a DTK-1500 Vibratome (Dosaka, Kyoto, Japan) in aerated,

ice-cold Gey’s balanced salt solution supplemented with 25 mM glucose.

The entorhino-hippocampi were dissected out under stereomicro-

scopic controls and cultivated using the membrane interface technique.

Slices were placed on sterile 30-mm-diameter membranes (Millicell-CM,

Millipore, Bedford, MA). Cultures were fed with 1 ml of 50% minimal
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essential medium (Invitrogen, Gaithersburg, MD), 25% horse serum

(Cell Culture Lab, Cleveland, OH) and 25% Hanks’s balanced salt

solution and maintained in a humidified incubator at 37�C in 5% CO2.

The medium was changed every 3.5 days. Electrophysiological experi-

ments were performed at day 9--14 in vitro.

Electrophysiological Recordings
Whole-cell recording was performed as described elsewhere (Fujisawa

et al., 2004a). A slice was transferred to a recording chamber and con-

tinuously perfused with oxygenated artificial CSF consisting of (mM):

124 NaCl, 25 NaHCO3, 3 KCl, 1.24 KH2PO4, 1.4 MgSO4, 2.2 CaCl2 and

10 glucose (37�C). Micropipettes (4--7 MX) were filled with internal

solutions consisting of (in mM): 136.5 KMeSO4, 17.5 KCl, 9 NaCl, 1

MgCl2, 10 HEPES and 0.2 EGTA (pH 7.2). Tight-seal whole-cell record-

ings were obtained from CA3 pyramidal neurons under a differential

interference contrast microscopy. Recordings were carried out with an

Axopatch 200B amplifier (Axon Instruments, Foster City, CA). Signals

were low-pass filtered at 1 kHz, digitized at 10 kHz and analyzed with

pCLAMP 8.0 software (Axon Instruments). The sorting of post-synaptic

potentials (PSPs) was carried out with custom-made software in Igor.

We report the mean ± SD in all measurements.

Phase Transition Models
The details are shown in the Supplementary material.

Results

Transitions of Active Patterns of CA3 Pyramidal Cells

Hippocampal CA3 pyramidal cells make synapses with other

CA3 pyramidal cells, forming an autoassociative, recurrent

network in this area (Amaral et al., 1990). In cultured hippo-

campal slices, we found that out of 42 whole-cell recordings

from pairs of visually identified CA3 pyramidal cells located

within 300 lm, 23.8% (10/42) showed monosynaptic connec-

tion. This probability is compatible with the density of CA3

recurrent network in vivo (Gomez-Di Cesare et al., 1997).

A CA3 pyramidal neuron in cultured hippocampal slices was

held in a current clamp mode of whole-cell recordings. In order

to activate this cell synaptically, we stimulated the stratum

radiatum, where CA3 pyramidal cells project the associational

fibers and provide recurrent inputs (Amaral et al., 1990). During

2 s of 10 Hz stimulation, the recorded neurons generated burst

spikes, and these burst discharges disappeared when the

stimulation was terminated (n = 5 slices; Fig. 1A, control). We

repeated the same paradigm of experiments in the presence of

carbachol, a muscarinic receptor agonist, which is known to

induce oscillatory activity in hippocampal slices (Fisahn et al.,

1998; Fujisawa et al., 2004a; Traub et al., 2004). When the

stratum radiatum was stimulated at 10 Hz for 2 s in the presence

of 10 lM carbachol, the membrane potentials of CA3 cells

shifted to more positive potentials by 8.7--15.6 mV, and this

depolarization was maintained and accompanied by persistent

firing activity (n = 5 slices; Fig. 1A, carbachol). On average, these

self-sustained discharges lasted for 37.8 ± 19.7 s (SD) and were

spontaneously settled into the resting conditions. Similar

persistent activities were obtained by current injection into

recorded cells. For Figure 1B, we injected a 5 s duration cur-

rent that mimicked the temporal features of a barrage of

post-synaptic potentials (PSPs) and found that this stimulus

alone was sufficient to induce self-sustained tonic discharges

(n = 7 slices). This persistent activity was not induced in the

absence of carbachol (n = 5 slices). All subsequent experiments

were performed in the presence of 10 lM carbachol (Fig. 1B).

In order to reveal any intermediate states between the resting

state and the tonic discharge state, we applied a sequence of

brief stimulation pulses (500 ms, rectangular 400 pA, every

10 s), a protocol inspired by an analogous method used by

Egorov et al. (2002). In 66 of 71 slices, the repetitive stimuli led

to graded transitions of spontaneous firing patterns (Fig. 1C). In

most cases, the amplitude of spikes was reduced after the

induction of persistent activity (Fig. 1), but this was not due to

a damage or degeneration of neurons because the spike size was

reversed to the control level when the persistent activity was

terminated by hyperpolarizing current injection (Supplemen-

tary Fig. 1). The graded transitions of firing pattern were

completely blocked by 1 lM atropine, a cholinergic muscarinic

receptor antagonist (n = 5 slices; Fig. 1C), or by removal of

extracellular Ca2
+
(n = 6 slices; data not shown).

Internal states in vivo, such as slow-wave oscillations, are

often characterized by an alternation of resting (DOWN) and

depolarized (UP) membrane potentials (Steriade et al., 1993;

Cowan and Wilson, 1994), and persistent firing activity may be

explained by prolonged versions of UP depolarization (Steriade

et al., 2001). We therefore considered that the duration of

depolarizing shifts may serve as a dimension along which to

evaluate the internal states. During the course of a repetitive

stimulation experiment, membrane voltages yielded a bimodal

distribution that was approximated by two Gaussian curves,

using least squares fitting (Fig. 2A right); the first peak (blue

line) corresponded to the resting membrane potential, the

second peak (red line) to the depolarized UP potential (Fig. 2A).

We defined a ‘significant depolarizing shift’ (SDS) as any

depolarization above the 0.1% significance level of the Gaussian

distribution representing the resting potential (blue broken

line). For example, the period indicated in red on the in-

tracellular trace in the left panel of Figure 3A represents an SDS.

Note that SDSs were not confined only to UP depolarizations but

include spikes and large PSPs. During SDSs, firing rates were

initially high ( >10 Hz) and rapidly reduced to a plateau level at

4--5 Hz (theta rhythm) (Fig. 2B).

Figure 2C indicates a typical change in SDS durations

following repetitive stimuli. A sequence of current injections

gradually recruited this neuron into longer SDSs, eventually

leading to a persistent SDS. Data for four other cells are

summarized in Figure 2D, where each color indicates each

neuron.

Multiple Internal States Emerge in
a Self-organized Manner

Although the internal states could emerge as a continuum from

the static state to persistent activity (but see below), we tried to

expediently classify these internal states in order to analyze their

structures and dynamics. We sought to categorize internal states

based on the dynamics of SDSs; a demonstration of this is shown

in Figure 3A. First we arbitrarily segmented an intracellular trace

into consecutive time epochs of 10 s and measured the lengths

of all SDSs that occurred during each epoch (Fig. 3A, left). We

then selected the SDS with the maximal length in each 10 s

section, and we used that to classify the epoch into one of five

states as follows. An epoch was defined as being in state I if the

maximal SDSwas <100ms and no spike occurred during the 10 s

period. An epoch was defined as being in state II if the maximal

SDS was <100 ms and at least one spike occurred. Epochs were

defined as being in states III, IV and V if the maximal SDS was

between 100 ms and 1 s, between 1 s and 10 s, and 10 s,

respectively (Fig. 3A, right). In the left panel of Figure 3B, we
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Figure 1. CA3 pyramidal cells transit between multiple active states. (A) A current clamp trace from a CA3 pyramidal neuron in the absence (top) and presence of 10 lM
carbachol (bottom). A persistent depolarizing shift with continuous firing activity was induced by a 10 Hz, 2 s stimulus of the stratum radiatum (SR stim.) only in the presence of
carbachol. (B) A similar depolarizing shift was induced by current injection into a neuron, in the presence of, but not in the absence of (top), 10 lM carbachol (bottom). The current
profile mimicked the temporal structure of a post-synaptic potential barrage. (C) Repetitive injections of brief rectangular currents (500 ms, 400 pA, every 10 s) in the presence of 10
lM carbachol induced a gradual change in firing patterns, eventually leading to self-sustained tonic discharges (top). Middle: magnified views of portions of the recording indicated
by correspondingly numbered boxes above. Bottom: this gradual change in firing patterns did not occur in the presence of the muscarinic receptor agonist atropine (atropine 1 lM,
carbachol 10 lM).
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Figure 2. Internal states of neurons are defined by significant depolarizing shifts (SDSs). (A) Definition of the significant depolarizing shift (SDS). The frequency of membrane
potential was bimodal, fitted by two Gaussian curves (right); the first peak (blue) represents the resting membrane potential and the second peak (red) corresponds to UP
depolarization. Here we define the SDS as membrane potential above the 0.1% significance level of the Gaussian fitting the non-depolarized (resting) membrane potential.
Hereinafter, SDSs are classified based on their durations. (B) Relationship between firing rate and SDS durations. (C) Membrane potential dynamics (top) of a neuron that received
repetitive current injections (500 ms, 400 pA, every 10 s) was analyzed by plotting the SDS durations versus time (bottom). (D) Current injection-evoked changes in SDSs of four
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show an example of membrane potential for each state. The

histogram of membrane potential (Fig. 3B, left, inset) indicates

that states I/II and state V correspond to persistent DOWN and

persistent UP states, respectively, and that state IV shows clear

bimodal UP/DOWN and represents an intermediate state.

To investigate the inner structures of these states, we created

a histogram of the length of SDSs (Fig. 3Ba). Neuronal states

were elicited by repeated stimulation pulses (see Fig. 2C,D), and

data were collected from 34 cells. Power law structures were

found in states I--IV; the best fit was seen in state IV, with an

exponent (m) of 1.43. Interestingly, however, SDS durations seen

in individual neurons usually showed a multi-peaked distribu-

tion, the peak points in which varied from cell to cell (Fig. 2E).

This suggests that the dynamics of membrane fluctuation is

multistable and diverse at the single-cell level.

We then examined the temporal patterns of spontaneous

spikes. Figure 3Bb indicates the histograms of inter-spike

intervals (ISIs). The ISI histogram of state II showed two peaks;

the first peak, at hundreds of milliseconds, corresponded

roughly to within-burst spike intervals and the second peak,

in the orders of seconds, corresponded to inter-burst intervals.

The first peak grew in state III, and a 1/sm structure emerged in

state IV (m = 1.33). In state V, ISIs converged into the 220 ms

peak, which corresponds to the theta rhythm.

To determine more about the temporal structure of a series of

spikes, we created a first-return map of ISIs, in which individual

ISIs were plotted versus the next ISIs (Fig. 3Bc). In general, if

ISIs are random or irregular, their data points are uniformly

scattered in the space of a return map, whereas if the spiking is

regular the data cluster into one or a few point(s). On the other

hand, when the data are aligned but in a nonlinear pattern, the

spiking pattern may be governed by certain nonlinear, but

deterministic, process (Ott, 1993; Fujisawa et al., 2004b).

The return map of ISIs in state II converged on the diagonal

line of the ISIi and ISIi+1 axes, and the state III map showed four

convergence points, suggesting that neurons in these states

fired spikes in a relatively regular manner. In state IV, however,

the map showed a nonlinear function; ISI points were distrib-

uted in an inverse-U form peaking at ~500 ms, which suggest

the existence of a nonlinear process that controls spike

sequences. Similar nonlinear behaviors of spikes were reported

in the hippocampus in exploring rats in vivo (Harris et al.,

2001). In state V, ISIs converged around the 220 ms interval.

Taken together, different states had different inner structures

leading to different spiking signatures.

We quantified the probability of state transitions between

neighboring 10 s segments of intracellular traces (n = 34 slices).

Figure 4A illustrates our method to estimate the transition

probability; in the case of ‘without stimulation’, we arbitrarily

segmented an intracellular trace into consecutive time epochs

of 10 s and classified each epoch into one of five states as

defined above (see Fig. 3A). We then collected data and

calculated the rate of state transitions that occurred between

the 10 s epochs (Fig. 4A, top). In the case of ‘with stimulation’,

we performed current injection every 10 s, and compared the

states before and after the stimulus (Fig. 4A, bottom).

Figure 4B summarizes the probability that the state transition

occurred spontaneously without stimulation (left) or were

evoked by stimulation pulses (right). In both cases, neurons

tended to maintain their internal states that were the same as

ones in the previous 10 s period. Thus, the states per se are

stable, which is suggestive of the presence of local attractors. As

compared with unstimulated neurons, however, the rates of

state transitions were significantly higher in neurons that

received stimulation pulses, in which cases the states tended

to transit to higher stages (P < 0.01; Kolmogorov--Smirnov test).

Taken together, these data show that neurons possess

multiple internal states between which they can dynamically

drift. We differentiated these internal states by compiling and

comparing the durations of all observed SDSs. Neurons at

different states displayed different dynamics of subthreshold

and suprathreshold membrane potential. Therefore, the neuro-

nal states were plausibly classified by our definition, although

the definition might seem to be arbitrary. In particular, state IV

represents a unique, intermediate stage, which was character-

ized by several complex behaviors, including some power law

structures and U-shaped ISI correlations.

Network States Control the Gain and
Responsiveness of Neurons

To address whether network states influence information

processing, we examined the response of a neuron with

different states to stimulation of the mossy fibers, one of the

major external inputs to the CA3 recurrent network. We

applied trains of 10 field stimuli (80 lA, 50 ms) to the granule

cell layer at various frequencies ranging from 0.4 to 100 Hz

while the recorded neurons stayed in states I--IV. Representa-

tive intracellular traces are shown in Figure 5A, and data for

seven slices were summarized in Figure 5B, in which the

ordinate indicates an output/input gain, defined by dividing

the number of spike outputs by the number of input stimuli

(i.e. 10). We did not analyze the state V because it was difficult

to discriminate evoked spikes from spontaneous firing; note

that this analysis was based simply on the question of how

many spikes are evoked by one stimulus (‘gain’), so persistent

spike activity during state V made this analysis impossible.

In state I, neurons fired very few spikes in response to low-

and high-frequency stimulation of the mossy fibers, whereas

they responded more faithfully to individual stimuli in the

middle ranges of frequency (4--10 Hz). As a result, state I

neurons worked as a sort of band-pass filter (Fig. 5B, left). In

states II and III, neurons were more responsive to low

frequency inputs ( <4 Hz) and acted like a low-pass filter (Fig.

5B, left). For state IV, we analyzed UP and DOWN periods

separately (Fig. 5B, right). When mossy fiber stimulation started

during DOWN periods, the CA3 neurons responded very

sensitively; the numbers of input stimuli and output spikes

were almost equivalent at >4 Hz of frequency (gain � 1), and at

lower frequencies the neurons emitted more spikes than given

inputs (gain > 1). On the other hand, when stimulation started

during UP periods, the gain was <1 at high frequencies

cells obtained from different slices. Each color represents each neuron. (E) SDS durations of a CA3 pyramidal cell show multi-peaked distributions during the course of a repetitive
stimulation experiment. These three examples were obtained from different slices, suggesting that the neuronal states are not continuum at the single-cell level, but rather that they
involve multistable points. Experiments were performed in the presence of 10 lM carbachol.
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Figure 3. Internal states are diverse and often self-organized. (A) Network states are categorized based on the maximal length of SDS involved in a 10 s segment of an intracellular
trace. State I is defined as any 10 s period during which the maximal SDS is\100 ms and no spike occurs. State II is defined as any 10 s period during which the maximal SDS is
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( >10 Hz). Mossy fiber simulation usually terminated UP de-

polarization (Fig. 5A; for the neocortex, see also Shu et al.,

2003a), and therefore similar data were obtained for UP and

DOWN at low frequencies (Fig. 5B, right). These results indicate

that different internal states have different modes of informa-

tion processing.

In order to reveal the difference in responsiveness between

UP and DOWN periods in state IV, we next measured the firing

probability and the amplitude of EPSPs. The probability of firing

in response of a single mossy fiber stimulus in DOWN was

higher than in UP in state IV or state V (Supplementary Fig. 2A).

We next examined the amplitude of mossy fiber-evoked EPSPs

in DOWN and UP. The EPSP amplitude in DOWNwas larger than

that in UP (Supplementary Fig. 2B). Thus, the neuronal re-

sponsiveness was higher in DOWN than in UP periods, and this

is in good agreement with previous studies in the neocortex in

vivo (Petersen et al., 2003; Sachdev et al., 2004; Crochet et al.,

2005; Leger et al., 2005; but see, Shu et al., 2003b).

Figure 4. Transition probability of internal states. (A) Schematics for calculation of the transition rate. In the case of ‘without stimulation’, we arbitrarily segmented an intracellular
trace into consecutive time epochs of 10 s and classify each epoch into one of five states as defined in Figure 3A, and then we calculate the rate of state transitions between
neighboring 10 s epochs (top). In the case of ‘with stimulation’, we performed current injection between the sections (bottom). (B) Ratios of state transitions in the absence
(without stimulation) and presence of brief current injection (with stimulation). The numbers I, II, III, IV and V indicate the corresponding states. Spontaneous transitions are
compared between consecutive 10 s epochs in an intracellular recording. Evoked transitions are compared between the 10 s periods before and after any current injection. The
numbers on the arrows indicate the percentages of state transitions from each initial state (n5 34 cells). Without current injections, the states tended to stay at the same state as
the previous one whereas current injections more often provoked state transitions. Experiments were performed in the presence of 10 lM carbachol.

\100 ms and at least one spike occurs. States III and IV are defined as any 10 s period during which the maximal SDS is between 100 ms and 1 s or between 1 s and 10 s,
respectively. State V is defined when the SDS persists for the entire 10 s period. (B) Characterization of the internal states. Left panels show representative waveforms and their
membrane potential histograms. Scale bar: 10 mV, 2 s. (a) The middle left panels indicate the frequency of the SDS duration for each state. State IV shows a 1/sm structure, with m
5 1.43. (b) The middle right histograms indicate the frequency of inter-spike intervals (ISIs). State IV shows a 1/fm structure, with m5 1.33. (c) The right panels indicate first-return
maps of ISIs, in which ISIs are plotted against the next ISIs. State IV shows a typical bell-shaped distribution, indicative of deterministic chaos. N.A.: not analyzed. Experiments were
performed in the presence of 10 lM carbachol.
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State Transitions Are Network-driven and
Can Be Triggered by Activation of Single Cells

We addressed the cellular and network mechanisms of state

transitions of CA3 pyramidal cells. Neuronal state shifts could

not be induced in the presence of 20 lM CNQX, 50 lM D,L-AP5

and 100 lM PTX (Fig. 6A). Therefore, state transitions (or

maintenance) require fast synaptic transmission and are un-

likely to attribute to single-cell attractors.

We performed paired recordings from neighboring CA3

pyramidal cells and applied repetitive stimulation pulses to

Figure 5. Spiking responses to mossy fiber inputs depend on the input frequency and network states. (A) Responses to successive 10 stimuli of the mossy fibers at 1, 10 and 40 Hz
in each state. (B) Relationship between the output/input ratio (gain) and stimulation frequency in each state. The output/input ratio was defined as the number of spike emissions
per stimulus. As neurons transit to higher states, they became responsive to lower-frequency mossy fiber inputs (#1 Hz). During DOWN periods in state IV, neurons respond
sensitively to high-frequency inputs ($40 Hz). n 5 7 slices. Experiments were performed in the presence of 10 lM carbachol.
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one cell (cell 1) alone. Strikingly, the stimulation induced state

transitions in the other cell (cell 2) as well as cell 1 (Fig. 6B). The

occurrence of SDSs was synchronized in time (Fig. 6B, bottom

left), and membrane potential fluctuations were also tightly

correlated between two cells (Fig. 6B, bottom right). Data for

three other cells are shown in Supplementary Figure 3, and

similar results were obtained in all cases tested. Data of all cell

pairs recorded were summarized in Figure 6C. In this figure, we

calculated the overlap ratio of SDSs, which was defined as (the

total duration of SDSs that occurred concurrently in cell 1 and

cell 2)/O[(the total SDS duration in cell 1) 3 (the total SDS

duration in cell 2)]. Thus, the overlap ratio is 100% if SDSs are

perfectly coincident between cell 1 and cell 2, whereas this

value drops to 0% if SDSs are not synchronized at all. We plotted

the overlap ratios as a function of the distance between two

cells. Green and black dots indicate synaptically connected and

unconnected cell pairs, respectively. SDSs became more syn-

chronized as the states advanced to higher levels, and this

synchronization was independent of the spatial distance be-

tween two cells recorded or of whether they had monosynaptic

connections. Simultaneous intracellular and extracellular re-

cordings also revealed that current injections into a single cell

entrained the spiking dynamics of neuron populations in the

surrounding network (Supplementary Fig. 4).

Network activity is often associated with synchronized

oscillations of membrane potential, such as theta (3--7 Hz) and

Figure 6. State transitions are network-driven and can be triggered by activation of single cells. (A) Intracellular traces of CA3 pyramidal cells that received repetitive current
injections in the presence of 20 lM CNQX, 50 lM D,L-AP5 and 100 lM PTX (left). The right panel indicates the maximal SDS durations seen during a sequence of current injections
(seven times, 10 s intervals) in the absence and presence of the inhibitor cocktail. No state transition occurs in the presence of the inhibitor cocktail, indicating that the states are
not attributable to single-cell attractors. *P\ 0.05 versus control, Student’s t-test (n 5 5 cells). (B) Membrane potential waveforms recorded simultaneously from a pair of
neighboring CA3 pyramidal cells (top left). A part of the trace is expanded (open triangle), showing no monosynaptic connection from cell 1 to cell 2 (top right). Current injections
into cell 1 alone induced concurrent transitions of the states in both cells. The bottom left plot indicates SDS durations of these two cells as a function of time. The bottom right
panel indicates a two-dimensional pseudo-color plot of subthreshold membrane potentials of these cells. (C) The relationship between the coincidence of SDSs and the distance of
two cells recorded. The ordinate indicates the fraction (%) of time that two cells simultaneously spent in SDSs. The green and black dots indicate synaptically connected and
unconnected cell pairs, respectively. Inserts: (Left top) The existence of direct synaptic connections from cell 1 to cell 2 is confirmed with monosynaptic responses of cell 2 following
action potential of cell 1. Scale bar: 20 pA, 40 mV, 50 ms. (Left bottom) Schematics of SDS overlap between cell 1 and cell 2. Scale bar, 5 mV, 1 s. (Right) Representative confocal
image of a pair of CA3 pyramidal cells that were labeled with streptavidin during recording. Experiments were performed in the presence of 10 lM carbachol.
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gamma waves (30--80 Hz) (Buzsaki, 2002; Traub et al., 2004).

We explored how internal states are linked to subthreshold

membrane potential oscillations, especially theta and gamma

frequency components. Figure 7A shows membrane potential

traces of cell 1 (current-injected cell) and cell 2 (unstimulated).

The cross-correlogram of their subthreshold membrane poten-

tials is shown below the traces, indicating that the correlation

patterns varied between states. Fourier power spectra of this

cross-correlogram (Fig. 7B) showed that theta-frequency

(3--7 Hz) and gamma-frequency (30--80 Hz) components in-

creased when the states shifted to higher stages. Figure 7C sum-

marizes the FFT power of the theta- and gamma-frequency

ranges (n = 17 slices).

Input Conductance in Different Internal States

Previous studies showed that UP depolarization is accompanied

by an increase in input conductance, which is generated by

synaptic barrages through an active network (Pare et al., 1998;

Destexhe et al., 2003; Shu et al., 2003a). We therefore tried to

examine whether input conductance and reversal potential vary

between different states. We carried out paired recordings in

which one neuron was current-clamped to monitor membrane

fluctuations, and the other neuron was voltage-clamped at

between –60 and 0 mV to measure both input conductance

and reversal potential. States IV and V were analyzed because

only these two states showed SDSs long enough to measure the

membrane conductance precisely.

Representative results are shown in Figure 8A. As UP de-

polarization started, the input conductance rapidly increased

and gradually decreased to a steady state. The reversal potential

during SDSs was –40 to –20 mV. We calculated the input

conductance and the reversal potential by referring the slope

and intercept of the I--V plot, respectively. We compared the

conductance during the DOWN baseline periods and the UP

periods (SDSs) and found that the conductance was increased

during UP. This conduction increase (Dconductance) repre-

sents an increase in membrane conductance due to synchro-

nized synaptic inputs from active networks, and thus the

Dconductance reflects the level of network activity (Shu

et al., 2003a). The change in the reversal potential during UP

state, if any, is also due to synaptic inputs, but it reflects the ratio

of excitatory and inhibitory inputs, rather than the intensity of

synaptic activity (Shu et al., 2003a). Figure 8B summarizes the

Dconductance and the reversal potential of six cells. The

Dconductance in state V was 16.8 ± 5.5 nS (n = 6). This value

is consistent with Dconductance measured in other studies in

cortical UP state in vitro (10--15 nS) (see Fig. 2 of Shu et al.,

2003a ) and in vivo (~14 nS) [Pare et al., 1998; we obtained this

value based on Rin of the UP (the 70% point) and DOWN peaks

in fig. 5 of their paper]. This value was significantly higher than

Figure 7. Internal states are associated with theta and gamma oscillations. (A) Membrane potential of cell 1 (i.e. the current injected cell) and cell 2, and the square of cross-
correlogram of the subthreshold membrane potential between cell 1 and cell 2. (B) FFT power spectra of the cross-correlogram between cell 1 and cell 2 in states I, III and V
(the same neuron as the panel A). The power in theta frequency of the cross-correlogram varied as the state changed. (C) FFT spectrum of cross-correlogram between cell 1 and
cell 2 under the different states. The frequency ranges of theta band (3--7 Hz) and gamma band (30--80 Hz) were analyzed. Experiments were all performed in the presence of
10 lM carbachol.
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that during UP periods in state IV (6.8 ± 2.0 nS). On the other

hand, the reversal potential in state V (–28.0 ± 11.6 mV) was not

different from that in state IV (–33.1 ± 8.6 mV). These results

suggest that higher neuronal states are associated with higher

input conductance whereas the balance of excitatory and

inhibitory inputs, captured by reversal potential, is preserved

across states.

Modeling the Internal States and State Transitions of
a Neuron

We have shown above that (i) the internal state of a CA3

pyramidal cell can shift to a different state in response to

stimulation; (ii) the cell has higher synaptic input conductance

in higher states; and (iii) the internal states of nearby neurons

are synchronized among the network. These results suggest

that the internal state of a single cell reflect the level of

synchronous firing activity of the network. For instance, if

neuron populations display synchronous firing activity, each

neuron in the network receives a higher level of balanced

excitatory and inhibitory synaptic inputs, which may contribute

to organized fluctuations of membrane potential. On the other

hand, neurons receive stochastic synaptic inputs if the network

neurons fire randomly. We therefore hypothesize that the

internal states of individual neurons reflect the degree of

synchrony of the network, i.e. the ‘phase’ of network activity.

If this is the case, the transition dynamics of the internal state

must be described by a so-called ‘phase transition’ model in

solid-state physics. We therefore attempted to create a theoret-

ical model to describe the phase transition dynamics of network

synchronization, according to the Landau ‘phase transition’

theory (Landau, 1980) and the phase transition model of Amit

et al. (1985). Our model describes (i) the structure of

synchronous network activity; (ii) the internal states of

individual cells in the network; and (iii) the dynamics produced

Figure 8. Larger input conductance in neurons during higher level internal states. (A) Current (top), membrane conductance (middle) and reversal potential (bottom) during
spontaneously occurring SDSs in state IV (left) and state V (right) in the same cells. The internal solution contained 5 mM QX-314 to minimize Naþ spikes. We measured the
membrane conductance based on the slope of the I--V plot and calculated the increase in the conductance during UP periods (Dconductance) by subtracting the conductance in the
DOWN baseline from that in UP periods. The baseline conductance during DOWN periods was 9.7 ± 2.8 nS (mean ± SD). Conductance and reversal potential were averaged for 1
s (UP: from 200 to 1200 ms after the SDS onset; DOWN: from�1200 to�200 ms after the SDS onset). (B) TheDconductance (left) and reversal potential (right) in states IV and V
were averaged for a 1 s period (from 200 to 1200 ms after the onsets of individual SDSs) for each cell. The Dconductance was significantly larger in state V than in state IV, but the
reversal potential was unchanged. Experiments were performed in the presence of 10 lM carbachol. **P\ 0.01 versus state IV, paired t-test (n 5 6 cells).
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by their interactions. In this model, we make two assumptions

(Fig. 9A; see also the Supplementary materials);

1. The free-energy of network activity F follows:

F = lðT – TcÞu2+uu4

This formula is based on a phase transition model of the

Hopfield network (Hopfield, 1982, 1984; Amit et al., 1985;

Hertz etal., 1991;Nishimori, 2001; see also the Supplementary

materials), although, unlike our model, the correlation was

given by emission rates, not spiking dynamics, in these

previous models (Amit, 1989). u shows the synchrony level

of the network. u = 0means that the network firing activity is

random, u > 0 indicates that the ‘firing’ states of individual

neurons aremore synchronized andu < 0 indicates thatmore

neurons are synchronized at ‘non-firing’ states. l and u are

constants.

T represents a conceptual ‘pseudo-temperature’ of net-

work activity. Note that T is not real temperature, but rather

it is used here as a numerical statistic associated with

network activity (Hertz et al., 1991); that is, as T increases,

neurons act more randomly. In other words, the shape of

the free-energy function F changes as a function of T. In this

respect, we consider the critical temperature Tc, at which

point the number of the stable points (local minima) of the

free energy function changes. When network temperature

is higher than this critical value (i.e. T > Tc), there is one

stable point at u = 0, whereas there are two stable points

when T < Tc. This change in the number of stable points

represents a ‘phase transition’ of the network synchrony

state, i.e. a shift from random states to synchronous firing

states (Amit et al., 1985).

2. When the network displays synchronous activity, it gen-

erates balanced excitatory and inhibitory synaptic inputs to

individual neurons embedded in the network, which cause

an increase of membrane conductance of these cells.

This assumption comes from our observation (Fig. 8). The

details are stated in the Supplementary materials.

Figure 9B shows the results of the computational simulation

of this model. When the temperature is higher than the critical

temperature (T > Tc), the distribution of membrane potential

showed a single peak (Fig. 9B). On the other hand, when the

temperature is lower than the critical temperature (T < Tc),

the membrane potential showed a biphasic distribution, and

the histogram of SDS durations revealed a 1/sm structure with an

exponent m = 1.09 (Fig. 9B). These results are in close

agreement with our experimental data. The maximal length of

SDSs for any given 10 s epoch was increased as Twas decreased,

and the relationship was nonlinear (Fig. 9C, left). The membrane

conductance also became higher as T was decreased (Fig. 9C,

middle). Therefore, SDSs durations were positively correlated

with the Dconductance (Fig. 9C, right), as we predicted in our

working hypothesis. Therefore, our model indicates that the

internal state of a neuron indeed represents the phase of

network activity and that a transition of the phase depends on

the level of balanced input conductance, i.e. the degree of the

overall network activity.

Discussion

About 300 000 pyramidal cells exist in the rat CA3 pyramidal

cell layer in vivo at a density of ~70 000 cells/mm3 (Amaral

et al., 1990; Coburn-Litvak et al., 2004). On average, each

pyramidal cell projects to ~6000 other pyramidal cells, a signif-

icant portion of which are located within a radius of a few

millimeters. Thus, the probability that cell pairs located within

500 lm are synaptically connected is calculated to be roughly

10--25% (Gomez-Di Cesare et al., 1997). Consistent with this,

we found that, out of 42 recordings from pairs of cells located

within 300 lm, 23.8% (10/42) showed monosynaptic connec-

tion. In acute slice preparations, this probability is quite low

(data not shown) because the slicing procedure cuts CA3

associational fibers extending in the longitudinal axis of the

hippocampus. Axonal reorganization in organotypic cultures

restores the complexity of CA3 recurrent loops to a realistic

extent, so we believe that our data reflect the physiological

operations of CA3 recurrent networks.

Using this preparation, we have shown that CA3 neurons

involve multiple internal states defined by the dynamics of

subthreshold membrane potential. Different internal states

show different spiking behaviors and different sensitivity to

external inputs; in particular, neurons with state IV exhibit

typical UP/DOWN alternations, and their membrane dynamics

are characterized by various power-law features and a U-shaped

ISI distribution. Following evoked spiking in single cells,

network neurons move between internal states. Thus, the state

of any given neuron may report on and influence the state of the

local network.

We found that the generation of synchronous network

activity is related to self-organization typified by a 1/s power

law. The power-law distribution, also called scale-free, is

present in many natural systems; it is thought to reflect the

cluster growth pattern with self-similar features in time and

space and usually emerges as a critical phenomenon in the

complex system (Bak et al., 1987). The power law structure has

recently been observed in propagating waves of synchronous

firing in neocortical slices (Beggs and Plenz, 2003). We found

that power laws are also evident in intracellular responses, i.e.

SDS durations and ISIs (Fig. 3B), implying that membrane

fluctuations of neurons are self-organized.

Internal States In Vivo and In Vitro

Coherent fluctuations of membrane potential have been asso-

ciated with brain states. In the neocortex, slow-wave oscilla-

tions, i.e. UP/DOWN alternations, appear in slow-wave sleep,

and persistent UP depolarization in REM sleep and awake

conditions (Steriade, 2003). In the hippocampus, theta oscil-

lations occur in REM sleep and waking exploration but are

absent in slow-wave sleep and resting conditions (Buzsaki,

2002). These facts suggest that information processing is state-

and region-dependent (Stickgold et al., 2001).

We categorized the internal states of neurons into five classes.

Based on their dynamics, we consider that states I and II

correspond to persistent DOWN (or basal) states, state III may

be related to complex burst spikes often seen in CA3 pyramidal

cells in behaving animals, state IV is UP/DOWN alternations, and

state V is persistent UP depolarization. Specifically, in the

hippocampus, theta and non-theta states seem to be the only

states seen in vivo (Isomura et al., 2004). The theta state may

correspond to state V and the non-theta to states I--III because

theta oscillations were more prominent in state V. In this sense,

state IV is unique and could represent a transition stage

between them. Indeed, our findings are the first evidence

that hippocampal neurons are potentially capable of rapidly
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alternating between UP and DOWN, like neurons in the

neocortex, thalamus and striatum.

Network-dependent Changes in Membrane Conductance

A fundamental issue is how membrane potential fluctuations,

such as UP/DOWN alternations, are generated in a single cell,

and how these fluctuations are synchronized within the

network. Macroscopic membrane conductance, which consists

of synaptic channels such as AMPA, NMDA and GABAA receptors

(Shu et al., 2003a) and non-synaptic channels such as persistent

Na
+
and IH channels (Mao et al., 2001; Compte et al., 2003;

Loewenstein et al., 2005), appears to be critical in generating

the complex SDS dynamics. Both Shu et al. (2003a) and us

carefully measured the reversal potential during UP depolariza-

tion and demonstrated that the elevated conductance is

comprised of proportionally balanced synaptic excitation and

inhibition and sustained through local recurrent synaptic

connections. Consistent with this, membrane potential fluctu-

ation of a pyramidal cell was abolished by a cocktail of an-

tagonists of synaptic receptors. Therefore, SDSs are generated

predominantly by an increase in synaptic conductance, i.e.

synaptic bombardment. Since the input conductance in state V

was larger than that in state IV, but the reversal potential was

unchanged; as the internal states advance to higher levels,

synaptic bombardments during UP depolarization becomemore

intensive without changing the total balance of excitatory and

inhibitory inputs. In other words, the duration of SDSs reflects

the total amount of balanced network activity.

Because GABAergic interneurons are present in our prepara-

tions and also because they seem to play a pivotal role in

network synchronization (Traub et al., 2004), it is possible that

the local inhibition determined the level of balanced network

activity. Further studies are required to address this possibility,

but it is consistent that intracellular recordings in ferret

prefrontal cortical neurons during UP periods revealed that

strong barrages of IPSPs were often synchronized between

neighboring pyramidal cells and that the dynamic-clamp in-

tracellular injection of simulated IPSP barrages strongly influ-

enced spike timing (Hasenstaub et al., 2004).

The fact that the durations of SDSs vary as a function of input

conductance implies that a change in weights of individual

synapses, i.e. synaptic plasticity, is not necessary for state

transitions; that is, it is the level of synaptic bombardment (i.e.

how many synapses are simultaneously active), rather than

individual synaptic strength or efficacy, that determines the

state of a neuron. This may explain why activation of single

neurons alone can alter the state of the entire local network;

note that synaptic plasticity is usually an extremely localized

phenomenon with input specificity and would therefore be

unable to explain the results of single-cell-induced entrainment

of network activity. We speculate that the input conductance

generated by network activity itself is plastic, thereby achieving

self-sustained multistability of the internal states. Given that the

responsiveness to external stimuli depends on internal states, it

is balanced input conductance that regulates network perfor-

mance in information processing.

Our finding that neuronal states and their transition dynamics

occur as a result of active recurrent network operations

provides a novel type of circuit plasticity, i.e. persistent changes

in network excitability, which differs from plasticity supported

by the intrinsic properties of single cells, such as ‘graded

persistent activity’ in the neocortex (Egorov et al., 2002) or

‘windup’ in the spinal cord (Morisset and Nagy, 2000). Activa-

tion of single neurons has been reported to transiently recruit

the correlated activity of a network (Miles and Wong, 1983;

Brecht et al., 2004; Briggman et al., 2005), but our results

indicate that single neurons are also capable of modifying

ongoing network activity, an effect that persists for long periods

and could affect network responsiveness.

From Attractors to Phases

As discussed above, the internal state of a neuron, defined by

SDSs, represents the state of the local network, i.e. ‘macroscopic

attractors’. On the other hand, information processing such as

memory storage and association has so far been believed to

depend on ‘microscopic attractors’, in which individual neurons

act as attractors in the network. Such microscopic attractors

were experimentally proposed by Mainen and Sejnowski

(1995), but it remains largely unknown how they do indeed

contribute to information processing. Hopfield(1982, 1984) has

theoretically indicated that microscopic attractors embody

associative memory in a neural network. In his model, synaptic

weights between neurons in an associative network determine

the stability and patterns of synchronous firing of a subset of

neurons, i.e. cell assembly. In other words, the connectivity of

a network produces a stable synchrony of neuron ensembles.

This is in essence equivalent to the Ising model in statistical

solid-state physics. Spikes or no spikes in the Hopfield model

correspond to spin orientation (‘up’ or ‘down’) of electrons in

the Ising model, and the connectivity of a network in the

Hopfield model corresponds to the interaction between spins

(Hertz et al., 1991). In the Ising model, phase transitions of

magnetic are explained by a change in the statistical nature of

spin interaction, which is induced by a temperature change

(Onsager, 1944). Likewise, in the Hopfield model, a change in

the level of network activity, termed ‘pseudo-temperature T’,

induces a phase transition of synchrony patterns in the Hopfield

network (Amit et al., 1985).

In our model, we made the working hypothesis that the

internal state of a neuron reflects the ‘phase’ of synchronous

Figure 9. Network states are associated with balanced recurrent activity: a model study inspired by the non-equilibrium statistical theory. (A) Conceptual schematics of our model.
This theoretical model describes the relationship between the structure of synchronous network activity and the internal state of single cells in the network. We made the following
assumptions: (i) the free-energy of network activity F is given by F 5 l(T -- Tc)u

2 þ uu4 (see text for definitions of variables). The shape of the free-energy function changes as
a function of T; in particular, the stable point of the free energy function bifurcate at T below the critical temperature Tc, that is, there are two stable points at T\Tc. The change in
the number of the stable points is called a ‘phase transition’. (ii) Synchronous network activity generates balanced excitatory and inhibitory synaptic inputs to each neuron in the
network, which cause an increase of membrane conductance of single cells. For details see text and Supplementary materials. (B) Membrane potential fluctuations and histograms
of SDS durations are plotted for five T points, i.e. T[Tc (top), T\Tc (top middle, middle, bottom middle), and T� Tc (bottom). The left panels show the shapes of the free energy
functions. The middle left panels indicate typical waveforms of subthreshold membrane potential obtained by computer simulation. The middle right panels indicate the histograms
of membrane potential. The right panels indicate the histograms of SDS durations. For details see text and Supplementary materials. (C) Relationship between the network
temperature T, Dconductance gbalanced, and the maximal SDS duration in any 10 s sections.
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network activity; that is, membrane potential fluctuations of

single cells are determined by synaptic input conductance that

is produced by synchronous network activity. By using mean-

field approximation of the Hopfield model, we succeeded in

describing attractor dynamics of synchronous network activity

in the macroscopic level. From a statistical physics point of

view, we have depicted, for the first time, the behavior of

a neural network in a way that is consistent with experimental

data. Note that the Hopfield model has not yet been physiolog-

ically verified in the biological system, and therefore this is the

first proven case in which a phase transition model is linked to

experimental data.

Conclusions

We have experimentally revealed details of internal neuronal

states and their dynamics. These states include persistent

activity, UP/DOWN alternations, and theta and gamma oscil-

lations. We see these different phenomena as reflections of

synchronous activity in a recurrent network with the internal

states developing through the nonlinear dynamics of a complex

system with self-organized criticality. These behaviors of

a neuron can be expressed elegantly in the physical formula

of phase transitions, and hence we propose herein that the

internal state of a neuron is regarded as a reflection of the

‘phase’ of a biological neural network.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/.
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