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ABSTRACT 

Fluctuations of membrane potential of cortical neurons, referred here to as internal states, are 

essential for brain function, but little is known about how these internal states emerge and are 

maintained or what determines transitions between these states.  We performed intracellular 

recordings from hippocampal CA3 pyramidal cells ex vivo and found that neurons display multiple 

and hierarchical internal states, which are linked to cholinergic activity and are characterized by 

several power law structures in membrane potential dynamics.  Multiple recordings from adjacent 

neurons revealed that the internal states were coherent between neurons, indicating that the internal 

state of any given cell in a local network could represent the network activity state.  Repeated 

stimulation of single neurons led over time to transitions to different internal states in both the 

stimulated neuron and neighboring neurons.  Thus, single cell activation is sufficient to shift the 

state of the entire local network.  As the states shift to more active levels, theta- and 

gamma-frequency components developed in the form of subthreshold oscillations.  State 

transitions were associated with changes in membrane conductance but were not accompanied by a 

change in reversal potential.  These data suggest that the recurrent network organizes the internal 

states of individual neurons into synchronization through network activity with balanced excitation 

and inhibition and that this organization is dynamic and has multiple levels.  Thus, neuronal states 

reflect the "phase" of an active network, a novel demonstration of the dynamics and flexibility of 

cortical microcircuitry. 
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INTRODUCTION  

Cognitive functions of humans and animals, including consciousness, perception, learning, 

and memory retrieval, depend on brain states (Wilson and McNughton 1994; Vaadia et al., 1995; 

Steriade et al., 2001; Stickgold et al., 2001).  Such brain states emerge spontaneously during 

behavior as well as the wake-sleep cycle, and they are ultimately attributed to fluctuations of 

membrane potential of individual neurons (both suprathreshold and subthreshold).  These 

fluctuations are referred to here as internal states.  One of the representative internal states is 

slow-wave oscillations, so-called UP/DOWN alternations.  The UP/DOWN alternations are 

characterized by a low-frequency (< 1 Hz) and large-amplitude (∼20 mV) alternation of 

depolarization and hyperpolarization, and they are usually observed in slow-wave sleep and under 

anesthesia (Steriade et al., 1993; Cowan and Wilson, 1994).  These states influence neural 

processing of sensory inputs, that is, the intensity and propagation of neuronal activity vary 

depending on whether neurons reside in UP or DOWN (Anderson et al., 2000; Petersen et al., 

2003; Shu et al., 2003b; Sachdev et al., 2004; Brecht et al., 2004; Leger et al., 2005).  In the 

waking state or rapid-eye-movement (REM) sleep, the UP/DOWN alternation disappears, and 

instead, neurons display persistent UP depolarization with fast oscillations (Steriade et al., 2001; 

Steriade 2003).  In the hippocampus, this state is likely to be associated with theta-frequency (3-7 

Hz) oscillations (Buzsaki, 2002). 

Thus, neurons possess various internal states, but it remains to be elucidated how neurons 

generate, maintain and transit between these internal states.  Previous studies have demonstrated 

that ongoing fluctuations of membrane potential are synchronized among adjacent neurons in the 

hippocampus (Kamondi et al., 1998; Buzsaki 2002), the neocortex (Lampl et al., 1999; Petersen et 

al., 2003; Ikegaya et al., 2004), and the striatum (Stern et al., 1998).  Network synchrony is 

believed to depend on recurrent synaptic activity with a balance of excitation and inhibition (Amit 

and Brunel, 1997; Shu et al., 2003a).  In the present study, therefore, we first focus on the 
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relationship of synchronous synaptic inputs and the internal states of hippocampal CA3 pyramidal 

cells, which synapse with approximately 6,000 other pyramidal cells to form an autoassociative, 

recurrent network in vivo (Amaral et al., 1990).  We then closely examine the temporal structures 

and dynamics of the internal states observed in these neurons.  We find that membrane potential 

dynamics of nearby neurons are coherent, have many degrees of intensity, and are organized with 

multiple power law structures.  We create a theoretical model that is analogous to the Landau 

“phase transition” theory and replicates the dynamics of the internal states of a neuron.  The 

computer simulation suggests that the level of balanced excitatory and inhibitory inputs is crucial 

for determining the internal states.  We therefore propose that the internal states of neurons 

represent the “phase” of an active recurrent network, i.e., a synchronous network state. 

 

MATERIALS AND METHODS 

Organotypic cultures of hippocampal slices   

Hippocampal slices prepared from postnatal day 7 Wistar/ST rats (SLC, Shizuoka, Japan) 

were cultured as previously described (Koyama et al., 2004).  Briefly, rat pups were deeply 

anesthetized by hypothermia, and their brains were aseptically removed, according to the National 

Institutes of Health guidelines for laboratory animal care and safety.  The caudal half of the whole 

brain was horizontally cut into 300-µm-thick slices using a DTK-1500 vibratome (Dosaka, Kyoto, 

Japan) in aerated, ice-cold Gey's balanced salt solution supplemented with 25 mM glucose.  The 

entorhino-hippocampi were dissected out under stereomicroscopic controls and cultivated using 

the membrane interface technique.  Slices were placed on sterile 30-mm-diameter membranes 

(Millicell-CM, Millipore, Bedford, MA).  Cultures were fed with 1 ml of 50% minimal essential 

medium (Invitrogen, Gaithersburg, MD), 25% horse serum (Cell Culture Lab, Cleveland, OH) and 

25% Hanks’ balanced salt solution and maintained in a humidified incubator at 37°C in 5% CO2.  

The medium was changed every 3.5 days.  Electrophysiological experiments were performed at 
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day 9-14 in vitro. 

Electrophysiological recordings 

Whole-cell recording was performed as described elsewhere (Fujisawa et al. 2004a).  A 

slice was transferred to a recording chamber and continuously perfused with oxygenated artificial 

CSF consisting of (mM): 124 NaCl, 25 NaHCO3, 3 KCl, 1.24 KH2PO4, 1.4 MgSO4, 2.2 CaCl2, and 

10 glucose (37°C).  Micropipettes (4-7 MΩ) were filled with internal solutions consisting of (in 

mM): 136.5 KMeSO4, 17.5 KCl, 9 NaCl, 1 MgCl2, 10 HEPES, and 0.2 EGTA (pH 7.2).  

Tight-seal whole-cell recordings were obtained from CA3 pyramidal neurons under a differential 

interference contrast microscopy.  Recordings were carried out with an Axopatch 200B amplifier 

(Axon Instruments, Foster City, CA).  Signals were low-pass filtered at 1 kHz, digitized at 10 

kHz and analyzed with pCLAMP 8.0 software (Axon Instruments).  The sorting of post-synaptic 

potentials (PSPs) was carried out with custom-made software in Igor. 

We report the mean ± standard deviation (SD) in all measurements. 

Phase transition models 

The details are shown in the supplemental material. 

 

RESULTS 

Transitions of active patterns of CA3 pyramidal cells 

Hippocampal CA3 pyramidal cells make synapses with other CA3 pyramidal cells, forming 

an autoassociative, recurrent network in this area (Amaral et al., 1990).  In cultured hippocampal 

slices, we found that out of 42 whole-cell recordings from pairs of visually identified CA3 

pyramidal cells located within 300 µm, 23.8% (10/42) showed monosynaptic connection.  This 

probability is compatible with the density of CA3 recurrent network in vivo (Gomez-Di Cesare et 

al., 1997). 

A CA3 pyramidal neuron in cultured hippocampal slices was held in a current clamp mode of 
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whole-cell recordings.  In order to activate this cell synaptically, we stimulated the stratum 

radiatum, where CA3 pyramidal cells project the associational fibers and provide recurrent inputs 

(Amaral et al., 1990).  During 2 sec of 10-Hz stimulation, the recorded neurons generated burst 

spikes, and these burst discharges disappeared when the stimulation was terminated (n=5 slices, 

Fig. 1A control).  We repeated the same paradigm of experiments in the presence of carbachol, a 

muscarinic receptor agonist, which is known to induce oscillatory activity in hippocampal slices 

(Fisahn et al., 1998; Traub et al., 2004; Fujisawa et al., 2004a).  When the stratum radiatum was 

stimulated at 10 Hz for 2 sec in the presence of 10 µM carbachol, the membrane potentials of CA3 

cells shifted to more positive potentials by 8.7 to 15.6 mV, and this depolarization was maintained 

and accompanied by persistent firing activity (n = 5 slices, Fig. 1A carbachol).  On average, these 

self-sustained discharges lasted for 37.8 ± 19.7 sec (SD) and were spontaneously settled into the 

resting conditions.  Similar persistent activities were obtained by current injection into recorded 

cells.  In figure 1B, we injected a 5 second duration current that mimicked the temporal features 

of a barrage of post-synaptic potentials (PSPs) and found that this stimulus alone was sufficient to 

induce self-sustained tonic discharges (n=7 slices).  This persistent activity was not induced in the 

absence of carbachol (n=5 slices).  All subsequent experiments were performed in the presence of 

10 µM carbachol (Fig. 1B). 

In order to reveal any intermediate states between the resting state and the tonic discharge 

state, we applied a sequence of brief stimulation pulses (500 msec, rectangular 400 pA, every 10 

sec), a protocol inspired by an analogous method used by Egorov et al. (2002).  In 66 of 71 slices, 

the repetitive stimuli led to graded transitions of spontaneous firing patterns (Fig. 1C).  In most 

cases, the amplitude of spikes was reduced after the induction of persistent activity (Fig. 1), but 

this was not due to a damage or degeneration of neurons because the spike size was reversed to the 

control level when the persistent activity was terminated by hyperpolarizing current injection 

(supplemental Fig. 1).  The graded transitions of firing pattern were completely blocked by 1 μM 
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atropine, a cholinergic muscarinic receptor antagonist (n=5 slices; Fig. 1C) or by removal of 

extracellular Ca2+ (n=6 slices; data not shown).  

Internal states in vivo, such as slow wave oscillations, are often characterized by an 

alternation of resting (DOWN) and depolarized (UP) membrane potentials (Steriade et al., 1993; 

Cowan and Wilson, 1994), and persistent firing activity may be explained by prolonged versions of 

UP depolarization (Steriade et al., 2001).  We therefore considered that the duration of 

depolarizing shifts may serve as a dimension along which to evaluate the internal states.  During 

the course of a repetitive stimulation experiment, membrane voltages yielded a bimodal 

distribution that was approximated by two Gaussian curves, using least squares fitting (Fig. 2A 

right); the first peak (blue line) corresponded to the resting membrane potential, and the second 

peak (red line) to the depolarized UP potential (Fig 2A).  We defined a “significant depolarizing 

shift (SDS)” as any depolarization above the 0.1% significance level of the Gaussian distribution 

representing the resting potential (blue broken line).  For example, the period indicated in red on 

the intracellular trace in the left panel of figure 3A represents an SDS.  Note that SDSs were not 

confined only to UP depolarizations but include spikes and large PSPs.  During SDSs, firing rates 

were initially high (> 10 Hz) and rapidly reduced to a plateau level at 4-5 Hz (theta rhythm) (Fig. 

2B).   

Figure 2C indicates a typical change in SDS durations following repetitive stimuli.  A 

sequence of current injections gradually recruited this neuron into longer SDSs, eventually leading 

to a persistent SDS (Fig. 2C).  Data for four other cells are summarized in figure 2D, where each 

color indicates each neuron.  

Multiple internal states emerge in a self-organized manner. 

Although the internal states could emerge as a continuum from the static state to persistent 

activity (but see below), we tried to expediently classify these internal states in order to analyze 

their structures and dynamics.  We sought to categorize internal states based on the dynamics of 
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SDSs; a demonstration of this is shown in figure 3A.  First we arbitrarily segmented an 

intracellular trace into consecutive time epochs of 10 sec and measured the lengths of all SDSs that 

occurred during each epoch (Fig. 3A left).  We then selected the SDS with the maximal length in 

each 10-sec section, and we used that to classify the epoch into one of five states as follows.  An 

epoch was defined as being in state I if the maximal SDS was less than 100 msec and no spike 

occurred during the 10-sec period.  An epoch was defined as being in state II if the maximal SDS 

was less than 100 msec and at least one spike occurred.  Epochs were defined as being in states 

III, IV and V if the maximal SDS was between 100 msec and 1 sec, between 1 sec and 10 sec, and 

10 sec, respectively (Fig. 3A right).  In the left panel of figure 3B, we show an example of 

membrane potential for each state.  The histogram of membrane potential (Fig. 3B left, the inset) 

indicates that states I/II and state V correspond to persistent DOWN and persistent UP states, 

respectively, and that state IV shows clear bimodal UP/DOWN and represents an intermediate 

state. 

To investigate the inner structures of these states, we created a histogram of the length of 

SDSs (Fig. 3Ba).  Neuronal states were elicited by repeated stimulation pulses (see Fig. 2C,D), 

and data were collected from 34 cells.  Power law structures were found in states from I to IV; the 

best fit was seen in state IV with an exponent (ν) of 1.43.  Interestingly, however, SDS durations 

seen in individual neurons usually showed a multi-peaked distribution, the peak points in which 

varied from cell to cell (Fig. 2E).  This suggests that the dynamics of membrane fluctuation is 

multistable and diverse at the single cell level.   

We then examined the temporal patterns of spontaneous spikes.  Figure 3Bb indicates the 

histograms of inter-spike intervals (ISIs).  The ISI histogram of state II showed two peaks; the 

first peak at hundreds of milliseconds corresponded roughly to within-burst spike intervals, and the 

second peak in the orders of seconds corresponded to inter-burst intervals.  The first peak grew in 

state III, and a 1/sν structure emerged in state IV (ν = 1.33).  In state V, ISIs converged into the 
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220-msec peak, which corresponds to the theta rhythm. 

To determine more about the temporal structure of a series of spikes, we created a first-return 

map of ISIs, in which individual ISIs were plotted versus the next ISIs (Fig. 3Bc).  In general, if 

ISIs are random or irregular, their data points are uniformly scattered in the space of a return map, 

whereas if the spiking is regular the data cluster into one or a few point(s).  On the other hand, 

when the data are aligned but in a non-linear pattern, the spiking pattern may be governed by 

certain non-linear, but deterministic, process (Ott, 1993; Fujisawa et al., 2004b). 

The return map of ISIs in state II converged on the diagonal line of the ISIi and ISIi+1 axes, 

and the state III map showed four convergence points, suggesting that neurons in these states fired 

spikes in a relatively regular manner.  In state IV, however, the map showed a nonlinear function; 

ISI points were distributed in an inverse-U form peaking at about 500 ms, which suggest the 

existence of a non-linear process that controls spike sequences.  Similar nonlinear behaviors of 

spikes were reported in the hippocampus in exploring rats in vivo (Harris et al., 2001).  In state V, 

ISIs converged around the 220-ms interval.  Taken together, different states had different inner 

structures leading to different spiking signatures. 

We quantified the probability of state transitions between neighboring 10-sec segments of 

intracellular traces (n=34 slices).  Figure 4A illustrates our method to estimate the transition 

probability; in the case of ‘without stimulation’, we arbitrarily segmented an intracellular trace into 

consecutive time epochs of 10 sec and classified each epoch into one of five states as defined 

above (see Fig. 3A).  We then collected data and calculated the rate of state transitions that 

occurred between the 10-sec epochs (Fig. 4A top).  In the case of ‘with stimulation’, we 

performed current injection every 10 sec, and compared the states before and after the stimulus 

(Fig. 4A bottom).  

Figure 4B summarizes the probability that the state transition occurred spontaneously 

without stimulation (left) or were evoked by stimulation pulses (right).  In both cases, neurons 
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tended to maintain their internal states that were the same as ones in the previous 10-sec period.  

Thus, the states per se are stable, which is suggestive of the presence of local attractors.  As 

compared with unstimulated neurons, however, the rates of state transitions were significantly 

higher in neurons that received stimulation pulses, in which cases the states tended to transit to 

higher stages (P<0.01; Kolmogorov-Smirnov test). 

Taken together, these data show that neurons possess multiple internal states between which 

they can dynamically drift.  We differentiated these internal states by compiling and comparing 

the durations of all observed SDSs.  Neurons at different states displayed different dynamics of 

subthreshold and suprathreshold membrane potential.  Therefore, the neuronal states were 

plausibly classified by our definition, although the definition might seem to be  arbitrary.  In 

particular, state IV represents a unique, intermediate stage, which was characterized by several 

complex behaviors, including some power law structures and U-shaped ISI correlations. 

Network states control the gain and responsiveness of neurons 

To address whether network states influence information processing, we examined the 

response of a neuron with different states to stimulation of the mossy fibers, one of the major 

external inputs to the CA3 recurrent network.  We applied trains of 10 field stimuli (80 µA, 50 

msec) to the granule cell layer at various frequencies ranging from 0.4 to 100 Hz while the 

recorded neurons stayed in state I to IV.  Representative intracellular traces are shown in figure 

5A, and data for 7 slices were summarized in figure 5B, in which the ordinate indicates an 

output/input gain, defined by dividing the number of spike outputs by the number of input stimuli 

(i.e., 10).  We did not analyze the state V because it was difficult to discriminate evoked spikes 

from spontaneous firing; note that this analysis was simply based on the question how many spikes 

are evoked by one stimulus (“gain”), so persistent spike activity during state V made this analysis 

impossible. 

In state I, neurons fired very few spikes in response to low- and high-frequency stimulation 
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of the mossy fibers, whereas they responded more faithfully to individual stimuli in the middle 

ranges of frequency (4-10 Hz).  As a result, state I neurons worked as a sort of band-pass filter 

(Fig. 5B left).  In states II and III, neurons were more responsive to low frequency inputs (< 4 Hz) 

and acted like a low-pass filter (Fig. 5B left).  For state IV, we analyzed UP and DOWN periods 

separately (Fig 5B right).  When mossy fiber stimulation started during DOWN periods, the CA3 

neurons responded very sensitively; the numbers of input stimuli and output spikes were almost 

equivalent at > 4 Hz of frequency (gain ≈ 1), and at lower frequencies, the neurons emitted 

multiple spikes than given inputs (gain > 1).  On the other hand, when stimulation started during 

UP periods, the gain was less than 1 at high frequencies (> 10 Hz).  Mossy fiber simulation 

usually terminated UP depolarization (Fig. 5A, and see also Shu et al., 2003a for the neocortex), 

and therefore, similar data were obtained for UP and DOWN at low frequencies (Fig. 5B right).  

These results indicate that different internal states have different modes of information processing.   

In order to reveal the difference in responsiveness between UP and DOWN periods in state 

IV, we next measured the firing probability and the amplitude of EPSPs.  The probability of firing 

in response of a single mossy fiber stimulus in DOWN was higher than in UP in state IV or state V 

(Supplemental Fig. 2A).  We next examined the amplitude of mossy fiber-evoked EPSPs in 

DOWN and UP.  The EPSP amplitude in DOWN was larger than that in UP (Supplemental Fig. 

2B).  Thus, the neuronal responsiveness was higher in DOWN than in UP periods, and this is in 

good agreement with previous studies in the neocortex in vivo (Petersen et al., 2003; Sachdev et al., 

2004; Crochet et al., 2005; Leger et al., 2005; but see, Shu et al., 2003b).   

State transitions are network-driven and can be triggered by activation of single cells 

We addressed the cellular and network mechanisms of state transitions of CA3 pyramidal 

cells.  Neuronal state shifts could not be induced in the presence of 20 µM CNQX, 50 µM 

D,L-AP5 and 100 µM PTX (Fig. 6A).  Therefore, state transitions (or maintenance) require fast 

synaptic transmission and are unlikely to attribute to single cell attractors. 
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We performed paired recordings from neighboring CA3 pyramidal cells and applied 

repetitive stimulation pulses to one cell (cell1) alone.  Strikingly, the stimulation induced state 

transitions in the other cell (cell2) as well as cell1 (Fig. 6B).  The occurrence of SDSs was 

synchronized in time (figure 6B bottom left), and membrane potential fluctuations were also 

tightly correlated between two cells (figure 6B bottom right).  Data for three other cells are shown 

in supplemental figure 3, and similar results were obtained in all cases tested.  Data of all cell 

pairs recorded were summarized in figure 6C.  In this figure, we calculated the overlap ratio of 

SDSs, which was defined as (the total duration of SDSs that occurred concurrently in cell1 and 

cell2)/√{(the total SDS duration in cell1) × (the total SDS duration in cell2)}.  Thus, the overlap 

ratio is 100% if SDSs are perfectly coincident between cell1 and cell2, whereas this value drops to 

0% if SDSs are not synchronized at all.  We plotted the overlap ratios as a function of the distance 

between two cells.  Green and black dots indicate synaptically connected and unconnected cell 

pairs, respectively.  SDSs became more synchronized as the states advanced to higher levels, and 

this synchronization was independent of the spatial distance between two cells recorded or of 

whether they had monosynaptic connections.  Simultaneous intracellular and extracellular 

recordings also revealed that current injections into a single cell entrained the spiking dynamics of 

neuron populations in the surrounding network (supplemental figure 4).   

Network activity is often associated with synchronized oscillations of membrane potential, 

such as theta (3~7 Hz) and gamma waves (30~80 Hz) (Buzsaki 2002; Traub et al., 2004).  We 

explored how internal states are linked to subthreshold membrane potential oscillations, especially 

theta and gamma frequency components.  Figure 7A shows membrane potential traces of cell1 

(current-injected cell) and cell2 (unstimulated).  The cross-correlogram of their subthreshold 

membrane potentials is shown below the traces, indicating that the correlation patterns varied 

between states.  Fourier power spectra of this cross-correlogram (Fig. 7B) showed that 

theta-frequency (3~7 Hz) and gamma-frequency (30~80 Hz) components increased when the states 
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shifted to higher stages.  Figure 7C summarizes the FFT power of the theta- and 

gamma-frequency ranges (n=17 slices). 

Input conductance in different internal states  

Previous studies showed that UP depolarization is accompanied by an increase in input 

conductance, which is generated by synaptic barrages through an active network (Pare et al., 1998; 

Destexhe et al., 2003; Shu et al., 2003a).  We therefore tried to examine whether input 

conductance and reversal potential vary between different states.  We carried out paired 

recordings in which one neuron was current-clamped to monitor membrane fluctuations, and the 

other neuron was voltage-clamped at between -60 and 0 mV to measure both input conductance 

and reversal potential.  States IV and V were analyzed because only these two states showed 

SDSs long enough to measure the membrane conductance precisely. 

Representative results are shown in Figure 8A.  As UP depolarization started, the input 

conductance rapidly increased and gradually decreased to a steady state.  The reversal potential 

during SDSs was -40 ~ -20 mV.  We calculated the input conductance and the reversal potential 

by referring the slope and intercept of the I-V plot, respectively.  We compared the conductance 

during the DOWN baseline periods and the UP periods (SDSs) and found that the conductance was 

increased during UP.  This conduction increase (Δconductance) represents an increase in 

membrane conductance due to synchronized synaptic inputs from active networks, and thus, the 

Δconductance reflects the level of network activity (Shu et al., 2003a).  The change in the reversal 

potential during UP state, if any, is also due to synaptic inputs, but it reflects the ratio of excitatory 

and inhibitory inputs, rather than the intensity of synaptic activity (Shu et al., 2003a).  Figure 8B 

summarized the Δconductance and the reversal potential of six cells.  The Δconductance in state 

V was 16.8 ± 5.5 nS (n=6).  This value is consistent with Δconductance measured in other studies 

in cortical UP state in vitro (10~15 nS) (Shu et al., 2003a, Fig 2) and in vivo (~14 nS) (Pare et al., 

1998; we obtained this value based on Rin of the UP (the 70% point) and DOWN peaks in Fig. 5 of 
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their paper).  This value was significantly higher than that during UP periods in state IV (6.8 ± 2.0 

nS).  On the other hand, the reversal potential in state V (-28.0 ± 11.6 mV) was not different from 

that in state IV (-33.1 ± 8.6 mV).   These results suggest that higher neuronal states are 

associated with higher input conductance whereas the balance of excitatory and inhibitory inputs, 

captured by reversal potential, is preserved across states.  

Modeling the internal states and state transitions of a neuron 

We have shown above that 1) the internal state of a CA3 pyramidal cell can shift to a 

different state in response to stimulation, 2) the cell has higher synaptic input conductance in 

higher states, and 3) the internal states of nearby neurons are synchronized among the network.  

These results suggest that the internal state of a single cell reflect the level of synchronous firing 

activity of the network.  For instance, if neuron populations display synchronous firing activity, 

each neuron in the network receives a higher level of balanced excitatory and inhibitory synaptic 

inputs, which may contribute to organized fluctuations of membrane potential.  On the other hand, 

neurons receive stochastic synaptic inputs if the network neurons fire randomly.  We therefore 

hypothesize that the internal states of individual neurons reflect the degree of synchrony of the 

network, i.e., the “phase” of network activity.  If this is the case, the transition dynamics of the 

internal state must be described by a so-called “phase transition” model in solid-state physics.  

We therefore attempted to create a theoretical model to describe the phase transition dynamics of 

network synchronization, according to the Landau “phase transition” theory (Landau 1980) and 

Amit, Gutfreund and Sompolinsky’s phase transition model (Amit et al., 1985).  Our model 

describes 1) the structure of synchronous network activity, 2) the internal states of individual cells 

in the network, and 3) the dynamics produced by their interactions.  In this model, we make two 

assumptions (Fig 9A; see also the supplemental materials); 

1) The free-energy of network activity F follows:  

42)( ϕϕμ uTTF c +−=  
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This formula is based on a phase transition model of the Hopfield network (Hopfield 1982,1984, 

Amit et al., 1985; Hertz et al., 1991; Nishimori 2001; see also the supplemental materials) although 

unlike our model, the correlation was given by emission rates, not spiking dynamics, in these 

previous models (Amit, 1989).  φ shows the synchrony level of the network. φ = 0 means that the 

network firing activity is random, φ>0 indicates that the “firing” states of individual neurons are 

more synchronized, and φ<0 indicates that more neurons are synchronized at “non-firing” states.  

μ and u are constants. 

T represents a conceptual “pseudo-temperature” of network activity.  Note that T is not real 

temperature, but rather it is used here as a numerical statistic associated with network activity 

(Hertz et al., 1991); that is, as T is higher, neurons become to act more randomly.  In other words, 

the shape of the free-energy function F changes as a function of T.  In this respect, we consider 

the critical temperature Tc, at which point the number of the stable points (local minima) of the free 

energy function changes.  When network temperature is higher than this critical value (i.e., T > 

Tc), there is one stable point at φ = 0, whereas there are two stable points when T is less than Tc.  

This change in the number of stable points represents a “phase transition” of the network 

synchrony state, i.e., a shift from random states to synchronous firing states (Amit et al., 1985). 

2) When the network displays synchronous activity, it generates balanced excitatory and inhibitory 

synaptic inputs to individual neurons embedded in the network, which cause an increase of 

membrane conductance of these cells.  This assumption comes from our observation  (Fig. 8).  

The details are stated in the supplemental materials.   

Fig. 9B shows the results of the computational simulation of this model.  When the 

temperature is higher than the critical temperature (T > Tc), the distribution of membrane potential 

showed a single peak (Fig. 9B).  On the other hand, when the temperature is lower than the 

critical temperature (T < Tc), the membrane potential showed a biphasic distribution, and the 

histogram of SDS durations revealed a 1/sν structure with an exponent ν = 1.09 (Fig. 9B). These 
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results are in close agreement with our experimental data.  The maximal length of SDSs for any 

given 10-sec epoch was increased as T was decreased, and the relationship was nonlinear (Fig. 9C 

left).  The membrane conductance also became higher as T was decreased (Fig. 9C middle).  

Therefore, SDSs durations were positively correlated with the Δconductance (Fig. 9C right), as we 

predicted in our working hypothesis.  Therefore, our model indicates that the internal state of a 

neuron indeed represents the phase of network activity and that a transition of the phase depends 

on the level of balanced input conductance, i.e., the degree of the overall network activity. 

 

DISCUSSION 

About 300,000 pyramidal cells exist in the rat CA3 pyramidal cell layer in vivo at a density 

of about 70,000 cells/mm3 (Amaral et al., 1990; Coburn-Litvak et al., 2004).  On average, each 

pyramidal cell projects to about 6,000 other pyramidal cells, a significant portion of which are 

located within a few millimeter radius.  Thus, the probability that cell pairs located within 500 

µm are synaptically connected is calculated to be roughly 10-25% (Gomez-Di Cesare et al., 1997).  

Consistent with this, we found that out of 42 recordings from pairs of cells located within 300 µm, 

23.8% (10/42) showed monosynaptic connection.  In acute slice preparations, this probability is 

quite low (data not shown) because the slicing procedure cuts CA3 associational fibers extending 

in the longitudinal axis of the hippocampus.  Axonal reorganization in organotypic cultures 

restores the complexity of CA3 recurrent loops to a realistic extent, so we believe that our data 

reflect the physiological operations of CA3 recurrent networks. 

Using this preparation, we have shown that CA3 neurons involve multiple internal states 

defined by the dynamics of subthreshold membrane potential.  Different internal states show 

different spiking behaviors and different sensitivity to external inputs; in particular, neurons with 

state IV exhibit typical UP/DOWN alternations, and their membrane dynamics are characterized 

by various power-law features and a U-shaped ISI distribution.  Following evoked spiking in 
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single cells, network neurons move between internal states.  Thus, the state of any given neuron 

may report on and influence the state of the local network. 

We found that the generation of synchronous network activity is related to self-organization 

typified by a 1/s power law.  The power-law distribution, also called scale-free, is present in many 

natural systems; it is thought to reflect the cluster growth pattern with self-similar features in time 

and space and usually emerges as a critical phenomenon in the complex system (Bak et al., 1987).  

The power law structure has recently been observed in propagating waves of synchronous firing in 

neocortical slices (Beggs and Plenz, 2003).  We found that power laws are also evident in 

intracellular responses, i.e., SDS durations and ISIs (Fig. 3B), implying that membrane 

fluctuations of neurons are self-organized.   

Internal states in vivo and in vitro 

Coherent fluctuations of membrane potential have been associated with brain states.  In the 

neocortex, slow-wave oscillations, i.e., UP/DOWN alternations, appear in slow-wave sleep, and 

persistent UP depolarization in REM sleep and awake conditions (Steriade 2003).  In the 

hippocampus, theta oscillations occur in REM sleep and waking exploration but are absent in 

slow-wave sleep and resting conditions (Buzsaki 2002).  These facts suggest that information 

processing is state- and region-dependent (Stickgold et al., 2001). 

We categorized the internal states of neurons into five classes.  Based on their dynamics, we 

consider that states I and II correspond to persistent DOWN (or basal) states, state III may be 

related to complex burst spikes often seen in CA3 pyramidal cells in behaving animals, state IV is 

UP/DOWN alternations, and state V is persistent UP depolarization.  Specifically, in the 

hippocampus, theta and non-theta states seem to be the only states seen in vivo (Isomura et al., 

2004).  The theta state may correspond to state V, and the non-theta to state I-III because theta 

oscillations were more prominent in state V.  In this sense, state IV is unique and could represent 

a transition stage between them.  Indeed, our findings are the first evidence that hippocampal 
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neurons are potentially capable of rapidly alternating between UP and DOWN, like neurons in the 

neocortex, thalamus, and striatum. 

Network-dependent changes in membrane conductance 

A fundamental issue is how membrane potential fluctuations, such as UP/DOWN alternations, 

are generated in a single cell, and how these fluctuations are synchronized within the network.  

Macroscopic membrane conductance, which consists of synaptic channels such as AMPA, NMDA, 

and GABAA receptors (Shu et al., 2003a) and non-synaptic channels such as persistent Na+ and IH 

channels (Mao et al., 2001; Compte et al., 2003; Loewenstein et al., 2005), appears to be critical in 

generating the complex SDS dynamics.  Shu et al. (2003a) and we carefully measured the 

reversal potential during UP depolarization and demonstrated that the elevated conductance is 

comprised of proportionally balanced synaptic excitation and inhibition and sustained through 

local recurrent synaptic connections.   Consistent with this, membrane potential fluctuation of a 

pyramidal cell was abolished by a cocktail of antagonists of synaptic receptors.  Therefore, SDSs 

are generated predominantly by an increase in synaptic conductance, i.e., synaptic bombardment.  

Since the input conductance in state V was larger than that in state IV, but the reversal potential 

was unchanged; as the internal states advance to higher levels, synaptic bombardments during UP 

depolarization becomes more intensive without changing the total balance of excitatory and 

inhibitory inputs.  In other words, the duration of SDSs reflects the total amount of balanced 

network activity.   

Because GABAergic interneurons are present in our preparations and also because they seem 

to play a pivotal role in network synchronization (Traub et al., 2004), it is possible that the local 

inhibition determined the level of balanced network activity.  Further studies are required to 

address this possibility, but it is consistent that intracellular recordings in ferret prefrontal cortical 

neurons during UP periods revealed that strong barrages of IPSPs were often synchronized 

between neighboring pyramidal cells and that the dynamic-clamp intracellular injection of 
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simulated IPSP barrages strongly influenced spike timing (Hasenstaub et al., 2004). 

The fact that the durations of SDSs vary as a function of input conductance implies that a 

change in weights of individual synapses, i.e., synaptic plasticity, is not necessary for state 

transitions, that is, it is the level of synaptic bombardment (i.e., how many synapses are 

simultaneously active), rather than individual synaptic strength or efficacy, that determines the 

state of a neuron.  This may explain why activation of single neurons alone can alter the state of 

the entire local network; note that synaptic plasticity is usually an extremely localized phenomenon 

with input specificity and would therefore be unable to explain the results of single cell-induced 

entrainment of network activity.  We speculate that the input conductance generated by network 

activity itself is plastic, thereby achieving self-sustained multistability of the internal states.  

Given that the responsiveness to external stimuli depends on internal states, it is balanced input 

conductance that regulates network performance in information processing. 

Our finding that neuronal states and their transition dynamics occur as a result of active 

recurrent network operations provides a novel type of circuit plasticity, i.e., persistent changes in 

network excitability, which differs from plasticity supported by the intrinsic properties of single 

cells, such as “graded persistent activity” in the neocortex (Egorov et al., 2002) or “windup” in the 

spinal cord (Morisset and Nagy, 2000).  Activation of single neurons has been reported to 

transiently recruit the correlated activity of a network (Miles and Wong 1983; Brecht et al., 2004; 

Briggman et al., 2005), but our results indicate that single neurons are also capable of modifying 

ongoing network activity, an effect that persists for long periods and could affect network 

responsiveness. 

From attractors to phases 

As discussed above, the internal state of a neuron, defined by SDSs, represents the state of 

the local network, i.e., “macroscopic attractors”.  On the other hand, information processing such 

as memory storage and association has so far been believed to depend on “microscopic attractors”, 
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in which individual neurons act as attractors in the network.  Such microscopic attractors were 

experimentally proposed by Mainen and Sejnowski (1995), but it remains largely unknown how 

they indeed contribute to information processing.  Hopfield has theoretically indicated that 

microscopic attractors embody associative memory in a neural network (Hopfield, 1982, 1984).  

In his model, synaptic weights between neurons in an associative network determine the stability 

and patterns of synchronous firing of a subset of neurons, i.e., cell assembly.  In other words, the 

connectivity of a network produces a stable synchrony of neuron ensembles.  This is in essence 

equivalent to the Ising model in statistical solid-state physics.  Spikes or no spikes in the Hopfield 

model correspond to spin orientation (“up” or “down”) of electrons in the Ising model, and the 

connectivity of a network in the Hopfield model corresponds to the interaction between spins 

(Hertz et al., 1991).  In the Ising model, phase transitions of magnetic are explained by a change 

in the statistical nature of spin interaction, which is induced by a temperature change (Onsager 

1944).  Likewise, in Hopfield model, a change in the level of network activity, termed 

“pseudo-temperature T”, induces a phase transition of synchrony patterns in the Hopfield network 

(Amit et al., 1985). 

In our model, we made the working hypothesis that the internal state of a neuron reflects the 

“phase” of synchronous network activity, that is, membrane potential fluctuations of single cells 

are determined by synaptic input conductance that is produced by synchronous network activity.  

By using mean-field approximation of the Hopfield model, we succeeded in describing attractor 

dynamics of synchronous network activity in the macroscopic level.  From a statistical physics 

point of view, we have depicted, for the first time, the behavior of a neural network in a way that is 

consistent with experimental data.  Note that the Hopfield model has not yet been physiologically 

verified in the biological system, and therefore, this is the first proven case in which a phase 

transition model is linked to experimental data.   
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Conclusions 

We have experimentally revealed details of internal neuronal states and their dynamics.  

These states include persistent activity, UP/DOWN alternations, and theta and gamma oscillations.  

We see these different phenomena as reflections of synchronous activity in a recurrent network 

with the internal states developing through the nonlinear dynamics of a complex system with 

self-organized criticality.  These behaviors of a neuron can elegantly be expressed in the physical 

formula of phase transitions, and hence, we propose herein that the internal state of a neuron is 

regarded as a reflection of the “phase” of a biological neural network. 
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FIGURE LEGENDS  
 
Figure 1  CA3 pyramidal cells 
transit between multiple active 
states  A. A current clamp trace 
from a CA3 pyramidal neuron in 
the absence (top) and presence of 
10 µM carbachol (bottom).  A 
persistent depolarizing shift with 
continuous firing activity was 
induced by a 10-Hz, 2-sec 
stimulus of the stratum radiatum 
(SR stim.) only in the presence 
of carbachol.  B. A similar 
depolarizing shift was induced 
by current injection into a neuron, 
in the presence of, but not in the 
absence of (top), 10 µM 
carbachol (bottom).  The 
current profile mimicked the 
temporal structure of a 
post-synaptic potential barrage.  
C. Repetitive injections of brief 
rectangular currents (500 ms, 
400 pA, every 10 sec) in the 
presence of 10 µM carbachol 
induced a gradual change in 
firing patterns, eventually 
leading to self-sustained tonic 
discharges.  Middle: magnified 
views of portions of the 
recording indicated by 
correspondingly numbered boxes 
above.  Bottom: this gradual 
change in firing patterns did not 
occur in the presence of the 
muscarinic receptor agonist 
atropine (atropine 1 µM, 
carbachol 10 µM).   
 



Fujisawa et al. CerCor-2005-00205  Page 25 

 
 
Figure 2  Internal states of neurons are defined by significant depolarizing shifts (SDSs)  A. Definition of 
the significant depolarizing shift (SDS).  The frequency of membrane potential was bimodal, fitted by two 
Gaussian curves (right); the first peak (blue) represents the resting membrane potential, and the second peak 
(red) corresponds to UP depolarization.  Here we define the “significant depolarizing shift (SDS)” as membrane 
potential above the 0.1% significance level of the Gaussian fitting the non-depolarized (resting) membrane 
potential.  Henceforth, SDSs will be classified based on their durations.  B. Relationship between firing rate 
and SDS durations.  C. Membrane potential dynamics (top) of a neuron that received repetitive current 
injections (500 ms, 400 pA, every 10 sec) was analyzed by plotting the SDS durations versus time (bottom).  D. 
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Current injection-evoked changes in SDSs of four cells obtained from different slices.  Each color represents 
each neuron.  E. The distribution of SDS duration of CA3 pyramidal showed multiple peaks.  Data were 
obtained from different slices.  These data suggest that internal states of cells are not completely continuum, but 
have some dispersal and distinct features.  Experiments were performed in the presence of 10 µM carbachol. 
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Figure 3  Internal 
states are diverse and 
often self-organized.  
A. Network states are 
categorized based on the 
maximal length of SDS 
involved in a 10-sec 
segment of an 
intracellular trace.  
State I is defined as any 
10-sec period during 
which the maximal SDS 
is less than 100 msec and 
no spike occurs.  State 
II is defined as any 
10-sec period during 
which the maximal SDS 
is less than 100 msec and 
at least one spike occurs.  
States III and IV are 
defined as any 10-sec 
period during which the 
maximal SDS is between 
100 msec and 1 sec or 
between 1 sec, and 10 
sec, respectively.  State 
V is defined when the 
SDS persists for the 
entire 10-sec period.  B. 
Characterization of the 
internal states. Left 
panels show 

representative 
waveforms and their 
membrane potential 
histograms.  Scale bar: 
10 mV, 2 sec.  (a) The 
middle-left panels 
indicate the frequency of 
the SDS duration for 
each state.  State IV 
shows a 1/sν structure 
with ν=1.43.  (b) The 
middle right histograms 
indicate the frequency of 
inter-spike intervals 
(ISIs).  State IV shows 

a 1/fν structure with ν=1.33.  (c) The right panels indicate first-return maps of ISIs, in which ISIs are plotted against 
the next ISIs.  State IV shows a typical bell-shaped distribution, indicative of deterministic chaos.  N.A.: not 
analyzed.  Experiments were performed in the presence of 10 µM carbachol. 
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Figure 4  Transition 
probability of internal 
states  A. Schematics for 
calculation of the transition 
rate.  In the case of 
‘without stimulation’, we 
arbitrarily segmented an 
intracellular trace into 
consecutive time epochs of 
10 sec and classify each 
epoch into one of five 
states as defined in Fig. 3A, 
and then we calculate the 
rate of state transitions 
between neighboring 
10-sec epochs (top).  In 
the case of ‘with 
stimulation’, we performed 
current injection between 
the sections (bottom)  B. 
Ratios of state transitions in 
the absence (without 
stimulation) and presence 
of brief current injection 
(with stimulation).  The 
numbers I, II, III, IV, and V 
indicate the corresponding 
states.  Spontaneous 
transitions are compared 
between consecutive 10-sec 
epochs in an intracellular 
recording.  Evoked 
transitions are compared 

between the 10-sec periods before and after any current injection.  The numbers on the arrows indicate the 
percentages of state transitions from each initial state (N = 34 cells).  Without current injections, the states 
tended to stay at the same state as the previous one whereas current injections more often provoked state 
transitions.  Experiments were performed in the presence of 10 µM carbachol. 
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Figure 5  Spiking responses to mossy fiber inputs depend on the input frequency and network states  A. 
Responses to successive 10 stimuli of the mossy fibers at 1, 10, and 40 Hz in each state.  B. Relationship 
between the output/input ratio (gain) and stimulation frequency in each state.  The output/input ratio was 
defined as the number of spike emissions per stimulus.  As neurons transit to higher states, they became 
responsive to lower-frequency mossy fiber inputs (≤ 1 Hz).  During DOWN periods in state IV, neurons respond 
sensitively to high-frequency inputs (≥ 40 Hz).  N=7 slices.  Experiments were performed in the presence of 
10 µM carbachol. 
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Figure 6  State transitions are network-driven and can be triggered by activation of single cells  A. 
Intracellular traces of CA3 pyramidal cells that received repetitive current injections in the presence of 20 µM 
CNQX, 50 µM D,L-AP5 and 100 µM PTX (Left).  The right panel indicates the maximal SDS durations seen 
during a sequence of current injections (7 times, 10 second intervals) in the absence and presence of the inhibitor 
cocktail.  No state transition occurs in the presence of the inhibitor cocktail, indicating that the states are not 
attributable to single-cell attractors.  *P < 0.05 versus control, Student’s t-test (N = 5 cells).  B. Membrane 
potential waveforms recorded simultaneously from a pair of neighboring CA3 pyramidal cells (top left).  A part 
of the trace is expanded (open triangle), showing no monosynaptic connection from cell1 to cell2 (top right). 
Current injections into cell1 alone induced concurrent transitions of the states in both cells.  The bottom-left 
plot indicates SDS durations of these two cells as a function of time.  The bottom-right panel indicates a 
two-dimensional pseudo-color plot of subthreshold membrane potentials of these cells.  C. The relationship 
between the coincidence of SDSs and the distance of two cells recorded.  The ordinate indicates the fraction 
(%) of time that two cells simultaneously spent in SDSs.  The green and black dots indicate synaptically 
connected and unconnected cell pairs, respectively.  Inserts: (Left top) The existence of direct synaptic 
connections from cell 1 to cell 2 is confirmed with monosynaptic responses of cell2 following action potential of 
cell1.  Scale bar: 20 pA, 40 mV, 50 msec.  (Left bottom) Schematics of SDS overlap between cell 1 and cell 2. 
Scale bar, 5 mV, 1sec.  (Right) Representative confocal image of a pair of CA3 pyramidal cells that were 
labeled with streptavidin during recording.  Experiments were performed in the presence of 10 µM carbachol.  
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Figure 7  Internal states are associated with theta and gamma oscillations  A. Membrane potential of cell1 
(i.e., the current injected cell) and cell2, and the square of cross-correlogram of the subthreshold membrane 
potential between cell1 and cell2.  B. FFT power spectra of the cross-correlogram between cell1 and cell2 in the 
State I, III, and V (the same neuron as the panel A).  The power in theta frequency of the cross-correlogram 
varied as the state changed.  C. FFT spectrum of cross-correlogram between cell1 and cell2 under the different 
states. The frequency ranges of theta band (3~7 Hz) and gamma band (30~80 Hz) were analyzed.  Experiments 
were all performed in the presence of 10 µM carbachol. 
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Figure 8  Larger input conductance in neurons during higher level internal states.  A. Current (top), 
membrane conductance (middle) and reversal potential (bottom) during spontaneously occurring SDSs in state 
IV (left) and state V (right) in the same cells.  The internal solution contained 5 mM QX-314 to minimize Na+ 
spikes.  We measured the membrane conductance based on the slope of the I-V plot and calculated the increase 
in the conductance during UP periods (Δconductance) by subtracting the conductance in the DOWN baseline 
from that in UP periods.  The baseline conductance during DOWN periods was 9.7 ± 2.8 nS (mean ± SD). 
Conductance and reversal potential were averaged for 1 sec (UP: from 200 to 1200 ms after the SDS onset. 
DOWN: from -1200 to -200 ms after the SDS onset).  B. The Δconductance (left) and reversal potential (right) 
in state IV and state V were averaged for a 1-sec period (from 200 to 1200 ms after the onsets of individual 
SDSs) for each cell.  The Δconductance was significantly larger in state V than state IV, but the reversal 
potential was unchanged.  Experiments were performed in the presence of 10 µM carbachol.  **P < 0.01 
versus state IV, paired t-test (N = 6 cells).   
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Figure 9  Network states 
are associated with 
balanced recurrent 
activity: a model study 
inspired by the 
non-equilibrium statistical 
theory  A. Conceptual 
schematics of our model.   
This theoretical model 
describes the relationship 
between the structure of 
synchronous network activity 
and the internal state of 
single cells in the network.  
We made the following 
assumptions: 1) the 
free-energy of network 
activity F is given 
by 42)( ϕϕμ uTTF c +−= .  
The network state parameter 
φ represents the synchronous 
state of the network, and T 
the pseudo-temperature of 
the network activity.  Tc is 
the critical temperature.  
The shape of the free-energy 
function changes as a 
function of T; in particular, 
the stable point of the free 
energy function bifurcate at 
T below the critical 
temperature Tc, that is, there 
are two stable points at T < 
Tc.  The change in the 
number of the stable points is 
called a “phase transition”.  
2) Synchronous network 
activity generates balanced 
excitatory and inhibitory 
synaptic inputs to each 
neuron in the network, which 
cause an increase of 
membrane conductance of 
single cells.  For details see 
text and supplemental 
materials.  B. Membrane 
potential fluctuations and 
histograms of SDS durations 

are plotted for five T points, i.e., T > Tc (top), T < Tc (top middle, middle, bottom middle), and T << Tc (bottom).  
The left panels show the shapes of the free energy functions.  The middle-left panels indicate typical waveforms 
of subthreshold membrane potential obtained by computer simulation.  The middle-right panels indicate the 
histograms of membrane potential.  The right panels indicate the histograms of SDS durations.  For details see 
text and supplemental materials  C. Relationship between the network temperature T, Δconductance gbalanced, and 
the maximal SDS duration in any 10-sec sections.  


