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Phase transition model of neuronal network 

 

This theoretical model describes (1) the structure of network synchronous activity, (2) the internal state 

of single cells embedded in a network, and (3) the dynamics produced by them. 

According to the Hopfield model, we first assume that the structure of network synchronous activity 

(Hopfield 1982, 1984), that is, the Hamiltonian of the network activity is described as: 
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at network temperature T.  Si is the firing state of neuron i, Si = 1 shows “fire” and Si = -1 shows 

“non-fire”.  Jij represents the synaptic interaction from neuron i to neuron j.  Note that temperature T is 

not the real temperature, but rather it is used here as a parameter which represents a network activity 

statistic; that is, as T is higher, neurons become to act more randomly (Amit et al., 1985).  

 

 
 

According to the model the mean field theory, the free-energy of the network synchronous state F is 

obtained as follows (Hertz et al., 1991; Nishimori 2001) 
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φ represents the degree of synchronization of the states of neurons in this network; φ = 0 means that 

network firing activity is random, φ>0 indicates that the “firing” states of individual neurons are more 

synchronized, and φ<0 indicates that more neurons are synchronized at “non-firing” states.  μ and u are 

constants (μ = 1; u = 1).  

 



 
We next consider the critical temperature Tc.  The shape of the free-energy function F changes as a 

function of T, and Tc is the temperature at which the number of the stable points (local minima) of the free 

energy function changes.  When temperature is higher than the critical temperature (T > Tc), there is only 

one stable point at φ = 0, whereas there are two stable points when T is less than Tc.  This change in the 

number of the stable points represents a “phase transition” of the network synchrony state, i.e., a shift from 

random states to synchronous firing states (Amit et al., 1985).  This is an analogy to structural analysis in 

solid-state physics in which temperature-dependent state changes is generally termed a phase transition 

(Landau 1980). 

 

 

We hypothesize that a phase transition of network activity induces a change in the level of synchronous 

synaptic inputs from the network into individual neurons, resulting in a transition of the internal states (the 

pattern of membrane potential fluctuations) of these neurons.  In other words, we think that the internal 

states of single cells reflect the phase of network activity states.   

 

--------- 

 

Here we describe the dynamics of both network synchronization and membrane potential of a single 

cell.  First, the dynamics of network synchronous state is given by 
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where F is the free-energy of network synchronous state as defined above, and τN is the time constant of 

network dynamics (Langevin equation).  W represents the brain oscillations.  We consider W as 

slow-wave (<1 Hz) oscillations, i.e., )2sin()( επ +×= ftAtW w , because this frequency range of 

oscillations is involved in generation of network synchronization such as UP/DOWN alternations in vitro 

(Sanchez-Vives and McCormick; 2000) and in vivo (Steriade et al., 1993).  ξN represents a stochastic 

component of synaptic inputs and denotes a zero-mean, Gaussian white noise with the autocorrelation 

function )0(2)0()( δξξ Dt NN =〉〈 , where D is the intensity of noise, and δ(t) is the Dirac delta function.  

We used. τN = 1 ms, Aw = 0.1, f = 0.2 Hz, and D = 0.55. 

The dynamics of membrane potential is  
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where Cm is cell capacitance, ξm represents a stochastic component of synaptic inputs, EL represents the 

reversal potentials for leakage current components, and gL is leak conductance.  Ebalance and gbalance 

represents the reversal potential and conductance during UP depolarization, respectively.  Ebalance is set to 

-30 mV, which was adopted from our experimental data (Fig. 8).  This value is consistent with that 

reported by Shu et al. (2003a).  In this equation, we do not take action potentials into consideration; 

instead we focus on the dynamics of subthreshold membrane potential.  Cm was set to 0.5 nF. 

gbalence (Δ conductance) is conductance due to balanced excitatory and inhibitory synaptic inputs, 

which are generated by synchronous synaptic inputs sφ as follows: 
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gunit is the unit conductance of a synchronous synaptic input.  gunit is set to 10 pS because the conductance 

of a single AMPA channel is about 5 ~ 20 pS (Swanson et al., 1997; Rosenmund et al., 1998; Derkach et al., 

1999), and that of a single GABAA channel is about 10 pS (Eghbali et al., 1997). 

Synchronous synaptic inputs sφ is a function that depends on network synchronous state φ;  
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where aφ is the coefficient of the number of synchronous synaptic inputs.  The coefficient aφ is set to 2000 

so that φ = 1 corresponds roughly to persistent UP depolarization; note that our experimental data showed 

that the Δ conductance is 10 ~ 20 nS during persistent UP periods (state V).   

ξm represents the stochastic component of synaptic inputs and denotes a zero-mean, Gaussian white 

noise with the autocorrelation function )0(2)0()( δξξ dt mm =〉〈 , where d is the intensity of noise, and 

δ(t) is the Dirac delta function.  The intensity of stochastic input d is also a function of the network 

synchronous state φ: 
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where d0 is the baseline stochastic synaptic inputs, and dφ is the φ-dependent component.  We used d0 = 



0.4 nA, dφ= 0.4 nA, τd= 1 ms. 

  

 
 

 

In summary, we assumed that membrane potential fluctuation depends on the Δ conductance generated 

by synchronous synaptic inputs, and the synchronous synaptic inputs depend on network synchronous 

states. 

   The figure below shows the dynamics of network synchrony, synchronous synaptic inputs (i.e., Δ 

conductance) and membrane potentials of single cells when T is less than Tc.  In this case, the free-energy 

of network synchronous states has two stable points, and the network synchrony levels transit periodically 

but stochastically between the double-well stable points.  Such transitions induced by periodic and 

stochastic forces are known as stochastic resonance (Wiesenfeld and Moss 1995; Gammaitoni et al., 1998).  

This stochastic resonance of network synchronous levels contributes to UP/DOWN alterations in single 

neurons. 

 
 

The results of computational simulation using this model are shown in the text (see Figure 9B).  
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